Engineering: turning ideas into reality - Innovation, Universities, Science and Skills Committee Contents


Memorandum 144

Submission from Stephen Salter, Emeritus Professor of Engineering Design, Institute for Energy Systems, University of Edinburgh

1.  SUMMARY

    -  At a recent energy conference Simon Vasey, trading manager of the major electricity provider Eon, said that while profits of billions of Euros had been made from the first round of the European carbon trading scheme not one kilogram of carbon had been abated.

    -  The monthly addition of points to the Keeling curve shows no reduction in the upward acceleration.

    -  Discussions of carbon emissions have used per nation rather than per capita data. A judicious choice of baseline date and the removal of shipping, aviation and the proxy carbon associated with imported goods has allowed at least one country to claim carbon reductions when in fact there has been an increase.

    -  The track record of the IPCC with regard to the timing of predicted events has been poor with several potential positive feed backs, such as the loss of Arctic ice, happening more rapidly than predicted in the earlier reports. People working for the IPCC report privately that there is intense pressure to modify wording from home governments.

    -  Ice core records show that have been many abrupt rises in world temperatures of a size and rate that would be catastrophic to a high world population. People who know a great deal about the problem and who have been studying it from the time when others thought it unimportant, now say that a sudden rise, perhaps at the next el Niño event, is likely and that, because the full effects of emissions lag their release, we may already be too late.

    -  Even if there are strong reasons for not deploying geo-engineering systems there is no case for not supporting vigorous research into every possible technique and for taking all feasible ones to the stage at which they could be rapidly deployed. This view is not yet shared by DEFRA and UK funding bodies.

    -  After 35 years work trying to develop renewable energy systems I now believe that it may not be possible to deploy enough of them quickly enough to prevent very serious consequences of climate change. For the last four years I have been working full time on the engineering design of one of the several possible techniques. The idea, due to John Latham, former Professor of Atmospheric Physics at the University of Manchester and now at the Centre for Atmospheric Research at Boulder Colorado, is to increase the reflection of solar energy from marine stratocumulus clouds by exploiting the well-accepted Twomey effect. Engineering drawings and design equations for a practical system are well advanced and can be made available to your Committee.

    -  Like everyone working in geo-engineering I do so with reluctance in the hope that it will not be needed but fearful that it may be needed with the greatest urgency.

2.  THE TWOMEY EFFECT

  1.  Twomey says that, for the same liquid water content, a large number of small drops will make a cloud reflect more than a small number of large drops. We would expect something like this from calculations of reflecting areas. We can see it with jars of glass balls of different sizes. We talk of dark storm clouds gathering when the drops become large enough to fall.

  2.  Even if the relative humidity goes above 100% a cloud drop cannot form without some form of condensation nucleus on which to grow. Over land there are plenty of suitable nuclei, 1,000 to 5,000 per cubic centimetre of air. But in clean mid ocean air the number is lower, often below 100 and some times as low as 10. In 1990 Latham proposed that the number of condensation nuclei could be increased by spraying sub-micron drops of sea water into the turbulent marine boundary layer. Initially the drops would evaporate quite quickly to leave a salty residue. Turbulence would mix these residues evenly through the marine boundary layer. Those that reached the clouds would provide ideal condensation nuclei and would grow to increase the reflecting area and so the cloud albedo.

  3.  The equations in Twomey's classic 1977 paper can be used to produce the graph below.



  4.  This follows the presentation used by Schwarz and Slingo (1996) and shows cloud top reflectivity for a typical liquid water content of 0.3 gm per cubic metre of air for a range of cloud depths as a function of drop concentration. The vertical bars show the range of drop concentrations suggested by Bennartz (2007) based on satellite observations.

  5.  If we know the initial cloud conditions, most especially the concentration of condensation nuclei, we can calculate how much spray will produce how much cooling. The method needs incoming sunshine, clean air, low cloud and the absence of high level cloud. The position of the best places varies with the seasons so sources should be mobile. Because the ratio of solar energy reflected to the surface-tension energy needed to generate drops is so large, it turns out that the spray quantities are quite practical. In the right conditions a spray source with a power rating of 150 kW can increase solar reflection by 2.3 TW, a ratio of 15 million. This is the sort of energy gain needed if humans are to attempt to influence climate.

3.  HARDWARE

  1.  The need to operate for long periods in mid-ocean and to migrate with the seasons points to a fleet of remotely operated wind-driven spray-vessels. These can obtain the electrical energy needed to make spray by dragging turbines like oversize propellers through the water. Thanks to satellite communications and navigation remote operation is now much easier.

  2.  Rather than solve the robotic problems of handling ropes and textile sails we propose to use Flettner rotors. Flettner rotors offer much higher lift coefficients and lift drag ratios than sails or aircraft wings but their main attraction is that a computer can control the rotation speed of a cylinder far more easily that it can tie a reef knot. Anton Flettner built a ship, the Baden-Baden, which crossed the Atlantic in 1926. She won a race against a sister ship with a conventional rig and could sail 20 degrees closer to the wind. The weight of rotors was one quarter of the weight of the rig that they replaced. Flettner won orders for six ships and built one, only to have the orders cancelled because of the 1929 depression. Modern bearings with spherical freedom and materials like Kevlar and carbon-fibre would make rotors even more attractive. Enercon, the major German wind turbine maker launched a 10,000 tonne rotor assisted ship on 2 August 2008. The television company Discovery Channel has funded successful trials of a 34 foot yacht conversion. They also carried out an experiment at sea which confirmed expectations of the very high energy gain offered by the Twomey effect.

  3.  Design calculations and general arrangement drawing of the first spray vessel are well advanced. It has a waterline length of 45 metres and a displacement of 300 tonnes. Early vessels have space for a crew as well as the option to transfer control to an auto pilot and from land. Future ones may be a little smaller. All sensitive equipment is in hermetically sealed cylindrical canisters which can be individually and thoroughly tested on land and quickly exchanged. With three spray systems it will be possible to spray 30 kg a second as 0.8 micron drops. A fleet of 50 vessels in well-chosen places could cancel the thermal effects of the present annual increase of greenhouse gases. Work packages and costings for a five-year development programme which would provide a reliable tested design for the ocean going hardware are available.

  4.  The change of cloud reflectivity necessary to stabilize global temperature despite a doubling of pre-industrial CO2 is about 1.1% globally or 6% if evenly spread in cloudy areas. The contrast-detection threshold for fuzzy irregular patterns is much higher, about 20%. It will be necessary to develop a method to convince non-technical decision makers that anything has changed. The spray generation modules have been designed so that one of them can be fastened to the hull of a conventional ship and can produce spray at 10 kg a second, drawing electrical power from the ship system. The ship would sail to a selected mid-ocean site and then drift to a sea anchor so as to minimize its own exhaust emissions.

  5.  The MODIS AQUA satellite system crosses most of the world at the same local time each day. We would download photographs of the shortwave radiation signals (channels 1, 3 and 4). These would be translated to align the ship positions and then rotated to bring the mean wind directions to be coincident. Multiple images of the cloud system would be added over a period of a few weeks. The random clouds should average to a medium grey with contrast of the wake improving with the square root of the number of photographs. Photographic superposition will allow the measurement of the result of a very small spray release.

4.  POTENTIAL SIDE EFFECTS

  1.  Our understanding of the world's climate system is far from complete because it is so difficult to carry out controlled experiments over the size range from condensation nuclei to continental weather systems. All geo-engineers are anxious about unintended consequences. Early models show that very large spray injections can have effects in either direction at long distances from the injection site in the same way that el Nino events can influence climate far from Chile and Peru. We also know that release from different sites can have quite different results. We therefore must regard the world climate system as having a large number of possible controls set by when and where we choose to release spray. So far, we have no idea about which control does what. However it should be possible to learn by a series of very small experiments using release patterns modulated on and off at the right periods in a known sequence followed by the measurement of the long-term correlation of climate parameters with the known input. This pseudo random binary sequence technique works well with analysis of communication networks without being noticed by users.

  2.  Modern computers do allow increasingly sophisticated analysis and prediction. Recently there has been a great deal of progress on computer simulation of all the effects of albedo control. The leading team is at the National Centre for Atmospheric Research at Boulder Colorado and is led by Philip Rasch using the most advanced fully-coupled air/ocean model. This produces results for nearly 60 atmospheric parameters presented as maps, zonal graphs and mean values. Evenly spread releases are less damaging than large point injections.

  3.  The amount of salt that cloud albedo control will inject into the atmosphere is orders of magnitude below the amount from breaking waves, some of which falls on land. The difference is that albedo control uses a carefully chosen, narrow spread of drop diameters.

  4.  The immediate effect of cloud albedo control will be a reduction of solar energy reaching the sea. The ocean temperatures are the primary driver of world climate but oceans are a very large thermal store so the effect will be slow. Currents and winds are efficient ways of distributing energy and sharing it with the land so the eventual effects will be well distributed. A short term engineering approach to choosing a cooling strategy would be to look at historic data on sea temperatures and attempt to replicate a pattern thought to be good with regard to sea levels, harvests, hurricane frequency, floods and droughts. Rather than thinking of the side-effects of we should really be studying the side effects of NOT doing albedo control and letting sea temperatures rise. We would then decide which of the outcomes was the least damaging.

  5.  A first effect of warmer seas is greater evaporation. Even though it is left out of many diagrams showing the effects of greenhouse gases, water vapour contributes at least an order of magnitude more global warming than carbon dioxide.

  6.  The second effect of warmer water flowing north is the loss of summer Arctic ice.

  7.  A third effect is that surface water temperatures above 26.5 C increase the probability and severity of tropical cyclones, hurricanes and typhoons.

  8.  Warmer surface water increases the density difference between it and the nutrient-rich cold water below it. If nutrients cannot flow to where there is light there will be no phytoplankton to act as the start of the marine food chain or as the source of dimethyl sulphide and a sink for carbon dioxide. At present dimethyl sulphide accounts for about 90% of the cloud condensation nuclei, (Charlson 1987) and sea warming will reduce the area producing it.

  9.  The sea has been soaking up much of the anthropogenic CO2. Rising temperature will release it.

  10.  Very large amounts of methane are stored in permafrost and even larger amounts as clathrates in the seabed at depths of a few hundred metres. The release of either could be regarded as an extreme side-effect of warmer seas and has been linked to the Permian extinction.

  11.  So far the only suggested negative effect of increasing cloud condensation nuclei is the possibility of reduced rainfall, something that people in Britain and Bihar would greatly welcome. The production of rain is a very complex process. A gross engineering over-simplification is that rain needs quite large drops to fall through deep clouds collecting smaller drops in their path so that they get big enough not to evaporate in the drier air below the cloud before they reach the ground. It is known that too many small drops due to nucleation from smoke from bush fires can reduce rain.

  12.  Clearly we must be cautious about doing albedo control up-wind of a drought-stricken region. However the driest regions are dry because subsiding air prevents winds blowing in from the sea. Perhaps a larger temperature difference between land and sea could produce a stronger monsoon effect to oppose part of the subsiding flow.

  13.  The effects of the nuclei that we produce will fade quickly. The marine stratocumulus clouds we will be treating are usually not deep enough to produce rain. But we could argue that if they were, the immediate effect would be to stop the rain over the sea and coastal regions. This would leave more water vapour in the air to give rain further inland where its value will be greater.

  14.  If we do not yet know enough about the side-effects of albedo control, at least we know more than about those of uncontrolled temperature rise. But the strongest defence is that we can start with small steps, move away from places where problems occur and stop in a week if some natural event, such as a volcanic eruption, should provide unwanted cooling.

5.  POLITICS

  1.  Control of the UK climate is in the hands of DEFRA. Official funding goes to many laboratories who tend repeat the conclusions from the previous funding that the climate problem is even more serious than previously thought and argue that more funding is necessary to find out how much more serious. There is a reluctance to fund any research into technology which is "not yet soundly proven". The present DEFRA policy is that carbon reductions are the best solution to the climate problem and also that they should be the only solution on the grounds that the possibility of alternatives might reduce pressure to reduce emissions. This is strikingly close to the view of senior officers in the RFC in world war I that issuing parachutes to pilots "might impair their fighting spirit". They were not even allowed to buy their own. The geo-engineering community agrees with the rank order of desirability of emission reduction to geo-engineering but asks "what progress in emissions reduction?"

  2.  People from the vigorous carbon trading market are emphatic that there could be, even should be, no parallel thermal trading equivalent and so it seems that, at present, there is none of the commercial return needed to attract research funding. Many geo-engineers agree that decisions about deployment should not be based on commercial considerations.

References

Bennartz R 2007. Global assessment of marine boundary layer cloud droplet number concentration from satellite. Journal of Geophysical Research, 112, 12, D02201, doi:10.1029/2006JD007547, From http://www.agu.org/pubs/crossref/2007/2006JD007547.shtml

Bower K, Choularton T, Latham J, Sahraei J and Salter S 2006. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds. Atmospheric Research 82 pp 328-336.

Charlson RJ, Lovelock JE, Andreae MO and Warren, SG April 1987. Oceanic phytoplankton, atmospheric sulphur and climate. Nature 326 pp 655-661.

Latham J 1990. Control of global warming. Nature 347 pp 339-340.

Latham J 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Letters. 2002 doi:10.1006/Asle.2002.0048.

Latham J, Rasch P, Chen C-C, Kettles L, Gadian A, Gettleman A, Morrison H, and Bower K, 2008 Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil. Trans Roy Soc A Special issue October 2008.

Salter SH, Latham J, Sortino G, Seagoing hardware for the cloud albedo control of reversing global warming. Phil Trans Roy Soc A Special issue October 2008.

Schwartz SE and Slingo A 1996. Enhanced shortwave radiative forcing due to anthropogenic aerosols In Clouds Chemistry and Climate (Crutzen and Ramanathan eds.) pp 191-236 Springer Heidelberg.

Websites

About parachutes: http://www.spartacus.schoolnet.co.uk/FWWparachutes.htm

Collected papers http://www.see.ed.ac.uk/~shs

INDOOR DEMONSTRATION OF THE TWOMEY EFFECT


  The jar on the left is contains 4 mm clear glass balls and has an albedo of about 0.6. The one on the right has glass balls one hundredth of the size and an albedo over 0.9.

September 2008





 
previous page contents next page

House of Commons home page Parliament home page House of Lords home page search page enquiries index

© Parliamentary copyright 2009
Prepared 27 March 2009